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Abstract. For a general class of scalar-tensor theories of gravitation proposed by Nordt- 
vedt, it is shown that Birkhoff’s theorem holds both in vacuum as well as in the presence of 
an electromagnetic field when the scalar field is time independent. 

1. Introduction 

In general relativity every spherically symmetric vacuum field of gravitation must be 
static. This fact is known as Birkhoff’s (1923) theorem. The possibility of the theorem 
being valid in other theories of gravitation have been examined by several authors 
(Schiicking 1959, O’Hanlon and Tupper 1972, Reddy 1973, Krori and Nandy 1977). 
They showed that in different forms of scalar-tensor theories, e.g. Jordan (1959), Brans 
and Dicke (1961), Ross (1972), Sen and Dunn (1971), Birkhoff’s theorefn holds when 
the scalar field is time independent. 

Again, in general relativity, every spherically symmetric electromagnetic field must 
be static (Hoffmann 1932, Das 1960). This so called generalisation of Birkhoff’s 
theorem was found to be valid in the scalar-tensor theory of Sen and Dunn (1971) 
(Reddy 1977) when the scalar field is time independent. 

In this paper we have established that the time invariance of the scalar field is a 
sufficient condition for Birkhoff’s theorem to hold in the case of the most general class of 
scalar-tensor theory proposed by Nordtvedt (1970), both in vacuum as well as in the 
presence of an electromagnetic field. Further, the proof is generalised for all fields with 
a particular structure of the energy-momentum tensor. It can be shown that the 
Nordtvedt class includes as special cases the theories of Jordan (1959), Brans and Dicke 
(1961) and Barkar (1978). 

2. Birkhoff’s theorem in Nordtvedt’s theory of gravitation 

We start with the case where the scalar field is coupled to an electromagnetic field for 
which the Nordtvedt-Maxwell field equations are 
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where the function U)(*) is an arbitrary (positive definite) function of the scalar field (I, 
and F,”” is the contravariant antisymmetric electromagnetic field tensor with *FWv as its 
tensor dual. Special choices for o ( 9 )  yield the theories of Jordan (1959), Brans and 
Dicke (1961) and Barkar (1978). 

Let the space-time be described by the spherically symmetric line element of the 
form 

ds2 = e’ dt2 -eA dr2 - ?(de2 + sin2 8 d+*) ( 5 )  

where h and U are functions of both r and t. Again, by virtue of spherical symmetry, the 
surviving components of are 

F14 = -F4i F23 = -F32. 

Also, in view of the metric (S), it follows from equation (3 )  that 

FZ3 = m sin 8 ( 7 )  

where q and m are arbitrary constants and can be interpreted, respectively, as the 
charge and the magnetic pole strength of the point source. Now, the Nordtvedt- 
Maxwell field equations (1) and ( 2 )  for the metric ( 5 )  reduce to 
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- e--” (dw/d$)+,’2 - e-” (dw/d+)i,h2 -- 
(2w + 3 )  (2w + 3 )  
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( 1 1 )  

where a prime denotes partial differentiation with respect to r and a dot that with 
respect to t. 

When the scalar field is time independent, i.e. when (c. = 0, we get from (1 1 )  

A( 1 +.%) = 0 ,  

which gives either 

A = O  

or 

where $o is aconstant of integration. Now, subtracting (8) from (lo), we get, with = 0 ,  

- ( l + g ) = ( a + 7 ) .  ( A ‘ +  v‘) * ’ I  

r 

With (15 )  as the correct solution, we get from (16 )  

and this gives for $ = i,bo/r2 

2(2w + 3 ) / r 2  = 0. (17 )  

But in Nordtvedt’s theory (2w + 3 )  # 0, so L e  only 0t.m possibility is valid, i.e. A = 0. 
Again, differentiating (16) with respect to t one obtains 

I;’ = 0.  (18) 

Hence we get 

v = R ( r )  + T(1) (19) 

where R ( r )  and T ( t )  are arbitrary functions of r and t respectively. Introducing a purely 
temporal transformation d i  = er” dt and then denoting the time coordinate 7 again by t, 
it follows, in view of (17), that the metric ( 5 )  is static. 

For the spherically symmetric purely vacuum gravitational field, the proof readily 
follows from above simply by putting q = m = 0.  
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3. Discussion 

(a) In the presence of the cosmological constant A Z O ,  with any arbitrary energy- 
momentum tensor Tr ,  the relevant equations with (c, = 0 are 

Proceeding as above, we can arrive at the result provided T :  = T: and T i  = 0. As 
T: = T:, by virtue of spherical symmetry, it is apparent that the proof is solely 
dependent on the structure of the energy-momentum tensor, i.e. the proof is valid 
whenever TE has the structure T :  = T;, T: = 7’2 and T r  = 0 ( p  # v )  or, in other words, 
when TE has two mutually orthogonal invariant subspaces of dimension two, each 
composed entirely of eigenvectors. As such, it is also evident that the proof does not 
really depend on Maxwell’s equations (3) and (4), but only on the algebraic structure of 
TE. (TE belongs to a special subclass of SegrC type [(11)(11)].) 

( b )  The proof as given above relies on the existence of the curvature coordinates. 
For a more general line element 

ds2 = eL’(r,r) dt2 - eA(r.r) dr2 - eW(‘~‘) df12 

the proof is not so apparent, 
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